

SOLUTIONS:

Exercise 1

$$(i) \sigma_{ii} = \sigma_{11} + \sigma_{22} + \sigma_{33}.$$

$$(ii) A_y B_{ij} = A_{11}B_{11} + A_{12}B_{12} + A_{13}B_{13} + A_{21}B_{21} + A_{22}B_{22} + A_{23}B_{23} + A_{31}B_{31} + A_{32}B_{32} + A_{33}B_{33}.$$

$$(iii) \text{ For } i=1 \text{ et } j=1, \quad \sigma_{11} = \lambda(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) + 2\mu\varepsilon_{11}.$$

$$\text{For } i = 1 \text{ et } j = 2, \quad \sigma_{12} = 2\mu\varepsilon_{11}.$$

In the same manner we can write the other terms for $(i,j) = (2,2), (3,3), (1,3), (3,1), (2,1), (2,3), (3,2)$.

$$(iv) \frac{\partial^2 F}{\partial x_i \partial x_i} = \frac{\partial^2 F}{\partial x_1 \partial x_1} + \frac{\partial^2 F}{\partial x_2 \partial x_2} + \frac{\partial^2 F}{\partial x_3 \partial x_3}.$$

(v) Note that,

$$\frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} + b_1 = 0.$$

Thus, for $i = 1$ we have,

$$\frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} + b_1 = 0.$$

Similar expressions are obtained for $i = 2, 3$.

Exercise 2

$$(i) \delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 3$$

$$\begin{aligned} (ii) \delta_{ij} \delta_{ij} &= \delta_{11} \delta_{11} + \delta_{12} \cancel{\delta_{12}} + \delta_{13} \cancel{\delta_{13}} \\ &\quad + \cancel{\delta_{21} \delta_{21}} + \delta_{22} \delta_{22} + \cancel{\delta_{23} \delta_{23}} \\ &\quad + \cancel{\delta_{31} \delta_{31}} + \cancel{\delta_{32} \delta_{32}} + \delta_{33} \delta_{33} \\ &= \delta_{ii} = \delta_{jj} \\ &= \delta_{11} \delta_{11} + \delta_{22} \delta_{22} + \delta_{33} \delta_{33} \\ &= 3. \end{aligned}$$

$$(iii) \delta_{ij} A_{ik} = \delta_{1j} A_{1k} + \delta_{2j} A_{2k} + \delta_{3j} A_{3k} = A_{jk}.$$

Exercise 3:

Given that the indices in every term are all dummy indices and that the order of x_i is not important, all terms are equivalent. We can write successively,

$$\begin{aligned}
 & (P_{ijk} + P_{jik} + P_{ikj})x_i x_j x_k \\
 &= P_{ijk} x_i x_j x_k + P_{jik} x_i x_j x_k + P_{ikj} x_i x_j x_k \\
 &= P_{ijk} x_i x_j x_k + P_{mnp} x_n x_m x_p + P_{qrs} x_q x_s x_r \\
 &= P_{ijk} x_i x_j x_k + P_{mnp} x_m x_n x_p + P_{qrs} x_q x_r x_s \\
 &= 3P_{ijk} x_i x_j x_k.
 \end{aligned}$$

Exercise 4:

Use the divergence, or Gauss theorem: $\int_{\Omega} \frac{\partial T_{jk..}}{\partial x_i} dV = \int_{\partial\Omega} n_i T_{jk..} ds$ with $T_{jk..} = x_i$ we can write,

$$\int_{\partial\Omega} x_i n_j ds = \int_{\Omega} \frac{\partial x_i}{\partial x_j} dV = \delta_{ij} \int_{\Omega} dV = \delta_{ij} V.$$

Exercise 5:

Use the divergence theorem: $\int_{\Omega} \frac{\partial T_{jk..}}{\partial x_i} dV = \int_{\partial\Omega} n_i T_{jk..} ds$.

Note that $\mathbf{b} = \nabla \times \mathbf{u}$ in component form is $b_i = \varepsilon_{ijk} u_{k,j}$. Thus, with $T_{jk..} = \lambda b_i = \lambda \varepsilon_{ijk} u_{k,j}$ we have

$$\int_{\partial\Omega} n_i (\lambda \varepsilon_{ijk} u_{k,j}) dS = \int_{\Omega} \frac{\partial (\lambda \varepsilon_{ijk} u_{k,j})}{\partial x_i} dV = \int_{\Omega} \varepsilon_{ijk} \partial (\lambda u_{k,j})_{,i} dV = \int_{\Omega} (\varepsilon_{ijk} \lambda_{,i} u_{k,j} + \varepsilon_{ijk} \lambda u_{k,ji}) dV.$$

Because $u_{k,ji}$ is symmetric, the second term in the integrand is zero. Thus, we have,

$$\int_{\partial\Omega} n_i (\lambda \varepsilon_{ijk} u_{k,j}) dS = \int_{\Omega} (\lambda_{,i} b_i) dV.$$

Exercise 6: Using index notation we can write,

(a) $\mathbf{u} \cdot \mathbf{L}^T \mathbf{v} = u_i (\mathbf{L}^T)_{im} v_m = u_i L_{mi} v_m = L_{mi} u_i v_m = (\mathbf{L} \mathbf{u} \cdot \mathbf{v})$
 $\mathbf{u} \cdot \mathbf{L}^T \mathbf{v} = u_i (\mathbf{L}^T)_{im} v_m = u_i L_{mi} v_m = v_m L_{mi} u_i = (\mathbf{v} \cdot \mathbf{L} \mathbf{u})$

(b) $[(\mathbf{u} \otimes \mathbf{v})(\mathbf{a} \otimes \mathbf{b})]_{ij} = u_i v_m a_m b_j = v_m a_m u_i b_j = [(\mathbf{v} \square \mathbf{a})(\mathbf{u} \otimes \mathbf{b})]_{ij}$
 or, $(\mathbf{u} \otimes \mathbf{v})(\mathbf{a} \otimes \mathbf{b}) = (\mathbf{v} \square \mathbf{a})(\mathbf{u} \otimes \mathbf{b})$.

Note that $(\mathbf{v} \square \mathbf{a})$ is a scalar and can be placed before or after the dyadic product.

Exercise 7:

In a general manner we can write,

$$\lambda = A_{ij}L_{ij} = \frac{1}{2}(A_{ij}L_{ij} + A_{ji}L_{ij}) = \frac{1}{2}(A_{ij}L_{ij} + A_{ji}L_{ji})$$

Note that since the terms is a scalar we can swap the indices in the second term. Using the symmetry of A_{ij} , we can write,

$$\lambda = \frac{1}{2}(A_{ij}L_{ij} + A_{ji}L_{ji}) = \frac{1}{2}A_{ij}(L_{ij} + L_{ji})$$

By definition we have, $L_{ij}^s = (L_{ij} + L_{ji})/2$ and thus, $A_{ij}L_{ij} = A_{ij}L_{ij}^s$.

Exercise 8:

Define $A_{ij} = x_i x_j$. Then A_{ij} are the components of the symmetric tensor,

$$\mathbf{A} = \mathbf{x} \otimes \mathbf{x},$$

Using the conclusion of the previous exercise, we see that the quadratic form,

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = L_{ij} x_i x_j = \frac{1}{2}(L_{ij} x_i x_j + L_{ji} x_j x_i) = \frac{1}{2} x_i x_j (L_{ij} + L_{ji}) = x_i x_j L_{ij}^s,$$

does not change if \mathbf{L} is replaced by \mathbf{L}^s .

Exercise 9:

$$\begin{aligned} \frac{\partial S}{\partial x_k} &= A_{ij} \frac{\partial x_i}{\partial x_k} x_j + A_{ij} x_i \frac{\partial x_j}{\partial x_k} = A_{ij} \delta_{ik} x_j + A_{ij} x_i \delta_{jk} = A_{kj} x_j + A_{ik} x_i = A_{kj} x_j + A_{jk} x_j = (A_{kj} + A_{jk}) x_j \\ \Rightarrow \frac{\partial S}{\partial x_i} &= (A_{ij} + A_{ji}) x_j. \end{aligned}$$

$$(A_{ij} + A_{ji}) \frac{\partial x_j}{\partial x_k} = (A_{ij} + A_{ji}) \delta_{jk} = A_{ik} + A_{ki} = A_{ij} + A_{ji}.$$

When $A_{ij} = A_{ji}$. With the symmetry we have, $2A_{ij}x_j$ and $2A_{ij}$.