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SOLUTIONS: 
 
Exercise 1 
 
(i) 332211 σσσσ ++=ii . 
 

11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33( ) ij ijii  A B A B A B A B A B A B A B A B A B A B= + + + + + + + + . 
 
(iii) For i=1 et j=1,  ( )11 11 22 33 11σ =λ ε +ε +ε +2με . 

 
For  i = 1 et j = 2,   12 11σ =2με . 

 
In the same manner we can write the other terms for  (i,j) = (2,2) , (3,3) , (1,3) , (3,1) , (2,1) , 
(2,3) , (3,2) . 
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(v) Note that,  
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Thus, for  i = 1 we have, 
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Similar expressions are obtained for i = 2, 3. 
 
Exercise 2  
 
(i) 3332211 =++= δδδδ ii                   
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 1 1 2 2 3 3( ) ij ik j k j k j k jkiii  A A A A Aδ δ δ δ= + + = . 



ME – 331: Solid Mechanics – Institute of Mechanical Engineering 
Series 1: February 18 2025 
 

2/3 
 

Exercise 3:  
 
Given that the indices in every term are all dummy indices and that the order of ix is not 
important, all terms are equivalent. We can write successively,  
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3 .
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Exercise 4: 

Use the divergence, or Gauss theorem: ..
..
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i jk

i

T
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∂∫ ∫  with ..jk iT x=  we can write, 
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Exercise 5: 

Use the divergence theorem: ..
..

jk
i jk

i

T
dV n T ds

xΩ ∂Ω

∂
=

∂∫ ∫ .  

Note that b u= ∇×  in component form is ,i ijk k jb ε u= . Thus, with .. ,jk i ijk k jT λb λε u= = we have 

( ) ( ) ( ) ( ),
, , , , ,,

ijk k j
i ijk k j ijk k j ijk i k j ijk k jii

i
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∂∫ ∫ ∫ ∫ . 

 
Because ,k jiu  is symmetric, the second term in the integrand is zeo. Thus, we have, 
 

( ) ( ), ,i ijk k j i in λε u dS λ b dV
∂Ω Ω

=∫ ∫ . 

 
Exercise 6: Using index notation we can write, 

 
(a). 

(b) ( )( ) ( )( )u v a b v a u bi m m j m m i jij ij
u v a b v a u b⊗ ⊗ = = = ⊗        

or, ( )( ) ( )( ).u v a b v a u b⊗ ⊗ = ⊗  
Note that ( )v a is a scalar and can be placed before or after the dyadic product.  
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Exercise 7: 
 
In a general manner we can write, 
 

 1 1( ) ( )
2 2ij ij ij ij ij ij ij ij ji jiλ=A L = A L +A L A L +A L=  

 
Note that since the terms is a scalar we can swap the indices in the second term. Using the 
symmetry of ijA , we can write,  
 

 1 1( ) ( )
2 2ij ij ij ji ij ij jiλ= A L +A L = A L +L  

 
By definition we have, ( ) 2s

ij ij jiL L +L=   and thus, s
ij ij ij ijA L =A L  . 

 
Exercise 8: 
 
Define ij i jA =x x . Then ijA  are the components of the symmetric tensor,  
 
 A = x x⊗ , 
 
Using the conclusion of the previous exercise, we see that the quantratic form, 
 

 1 1( ) ( )
2 2

x Lx s
ij i j ij i j ji j i i j ij ji i j ijL x x L x x L x x x x L L x x L= = + = + = , 

 
does not change if L  is replaced by Ls  . 
 
 
Execise 9:  
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When ij jiA A= . With the symmetry we have, 2 ij jA x  and 2 .ijA  
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